TY - JOUR
T1 - Activation of MrgprA3 and MrgprC11 on bladder-innervating afferents induces peripheral and central hypersensitivity to bladder distension
AU - Grundy, Luke
AU - Caldwell, Ashlee
AU - Garcia-Caraballo, Sonia
AU - Grundy, David
AU - Spencer, Nick J.
AU - Dong, Xinzhong
AU - Castro, Joel
AU - Harrington, Andrea M.
AU - Brierley, Stuart M.
N1 - Publisher Copyright:
© 2021 Society for Neuroscience. All rights reserved.
PY - 2021/4/28
Y1 - 2021/4/28
N2 - Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterD2/2 mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterD2/2 mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.
AB - Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterD2/2 mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterD2/2 mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.
KW - Bladder
KW - GPCR
KW - Itch
KW - Pain
KW - Sensory neurons
KW - Visceral afferents
UR - http://www.scopus.com/inward/record.url?scp=85105836827&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.0033-21.2021
DO - 10.1523/JNEUROSCI.0033-21.2021
M3 - Article
C2 - 33727332
AN - SCOPUS:85105836827
SN - 0270-6474
VL - 41
SP - 3900
EP - 3916
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 17
ER -