TY - JOUR
T1 - Aristaless-related homeobox gene, the gene responsible for West syndrome and related disorders, is a Groucho/transducin-like enhancer of split dependent transcriptional repressor
AU - McKenzie, O.
AU - Ponte, I.
AU - Mangelsdorf, M.
AU - Finnis, M.
AU - Colasante, G.
AU - Shoubridge, C.
AU - Stifani, S.
AU - Gécz, J.
AU - Broccoli, V.
N1 - Funding Information:
We would like to thank Dr. Elena Colombo for gene expression studies and Dr. Valentina Raimondi for invaluable advice. This work was supported by the National Health and Medical Research Council of Australia Program grant 400121 to J.G., Telethon GGP41041 and the FIRB project (MIUR, RBNE015242-RBLA03AF28-VB) to V.B.
PY - 2007/4/25
Y1 - 2007/4/25
N2 - Aristaless-related homeobox gene (ARX) is an important paired-type homeobox gene involved in the development of human brain. The ARX gene mutations are a significant contributor to various forms of X-chromosome-linked mental retardation with and without additional features including epilepsy, lissencephaly with abnormal genitalia, hand dystonia or autism. Here we demonstrate that the human ARX protein is a potent transcriptional repressor, which binds to Groucho/transducin-like enhancer of split (TLE) co-factor proteins and the TLE1 in particular through its octapeptide (Engrailed homology repressor domain (eh-1) homology) domain. We show that the transcription repression activity of ARX is modulated by two strong repression domains, one located within the octapeptide domain and the second in the region of the polyalanine tract 4, and one activator domain, the aristaless domain. Importantly, we show that the transcription repression activity of ARX is affected by various naturally occurring mutations. The introduction of the c.98T>C (p.L33P) mutation results in the lack of binding to TLE1 protein and relaxed transcription repression. The introduction of the two most frequent ARX polyalanine tract expansion mutations increases the repression activity in a manner dependent on the number of extra alanines. Interestingly, deletions of alanine residues within polyalanine tracts 1 and 2 show low or no effect. In summary we demonstrate that the ARX protein is a strong transcription repressor, we identify novel ARX interacting proteins (TLE) and offer an explanation of a molecular pathogenesis of some ARX mutations, including the most frequent ARX mutations, the polyalanine tract expansion mutations, c.304ins(GCG)7 and c.428_451dup.
AB - Aristaless-related homeobox gene (ARX) is an important paired-type homeobox gene involved in the development of human brain. The ARX gene mutations are a significant contributor to various forms of X-chromosome-linked mental retardation with and without additional features including epilepsy, lissencephaly with abnormal genitalia, hand dystonia or autism. Here we demonstrate that the human ARX protein is a potent transcriptional repressor, which binds to Groucho/transducin-like enhancer of split (TLE) co-factor proteins and the TLE1 in particular through its octapeptide (Engrailed homology repressor domain (eh-1) homology) domain. We show that the transcription repression activity of ARX is modulated by two strong repression domains, one located within the octapeptide domain and the second in the region of the polyalanine tract 4, and one activator domain, the aristaless domain. Importantly, we show that the transcription repression activity of ARX is affected by various naturally occurring mutations. The introduction of the c.98T>C (p.L33P) mutation results in the lack of binding to TLE1 protein and relaxed transcription repression. The introduction of the two most frequent ARX polyalanine tract expansion mutations increases the repression activity in a manner dependent on the number of extra alanines. Interestingly, deletions of alanine residues within polyalanine tracts 1 and 2 show low or no effect. In summary we demonstrate that the ARX protein is a strong transcription repressor, we identify novel ARX interacting proteins (TLE) and offer an explanation of a molecular pathogenesis of some ARX mutations, including the most frequent ARX mutations, the polyalanine tract expansion mutations, c.304ins(GCG)7 and c.428_451dup.
KW - ARX
KW - MRX
KW - X-linked mental retardation
KW - mutation
KW - polyalanine tract expansion
KW - transcription repression
UR - http://www.scopus.com/inward/record.url?scp=34247466477&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2007.01.038
DO - 10.1016/j.neuroscience.2007.01.038
M3 - Article
C2 - 17331656
AN - SCOPUS:34247466477
SN - 0306-4522
VL - 146
SP - 236
EP - 247
JO - Neuroscience
JF - Neuroscience
IS - 1
ER -