TY - JOUR
T1 - Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue
T2 - A validation study and development of a 3 dimensional pericardial adipose tissue model
AU - Mahajan, Rajiv
AU - Kuklik, Pawel
AU - Grover, Suchi
AU - Brooks, Anthony G.
AU - Wong, Christopher X.
AU - Sanders, Prashanthan
AU - Selvanayagam, Joseph B.
N1 - Funding Information:
Dr. Mahajan is supported by the Australian Postgraduate Award and Leo J. Mahar Electrophysiology Scholarships from the University of Adelaide. Dr Grover is supported by the MF and MH Joyner Scholarship in Medicine from the Flinders University. Dr. Wong is supported by a Rhodes Scholarship and a Postgraduate Scholarship from the National Health and Medical Research Council of Australia. Drs. Brooks, Kuklik, Sanders are funded by the National Heart Foundation of Australia. Dr Sanders is also supported by the Practitioner Fellowship from the National Health and Medical Research Council of Australia. Dr. Sanders reports having served on the advisory board of St. Jude Medical, Bard Electrophysiology, Biosense-Webster, Medtronic, Sanofi-Aventis, and Merck. Dr. Sanders reports having received lecture fees from St. Jude Medical, Bard Electrophysiology, Biosense-Webster, Medtronic and Merck. Dr. Sanders reports having received research funding from St. Jude Medical, Bard Electrophysiology, Biosense-Webster and Medtronic. Dr Selvanayagam reports having received consulting fees from Kai Pharmaceuticals, Phillips, Siemens and Bristol Myers Sqiubb. Dr. Selvanayagam reports having received lecture fees from St. Jude Medical, Medtronic, Siemens, Pfizer, Bayer and AstraZenecca. He reports having received research funding from Siemens.
PY - 2013
Y1 - 2013
N2 - Background: Recently pericardial adipose tissue (PAT) has been shown to be an independent predictor of atrial fibrillation (AF). Atrial PAT may influence underlying atrial musculature creating a substrate for AF. This study sought to validate the assessment of total and atrial PAT by standard cardiovascular magnetic resonance (CMR) measures and describe and validate a three dimensional atrial PAT model. Methods. 10 merino cross sheep underwent CMR using a 1.5 Tesla system (Siemens, Sonata, Erlangen, Germany). Atrial and ventricular short axis (SA) images were acquired, using ECG -gated steady state free precession sequences. In order to quantify total volume of adipose tissue, a three dimensional model was constructed from consecutive end-diastolic images using semi-automated software. Regions of adipose tissue were marked in each slice followed by linear interpolation of pixel intensities in spaces between consecutive image slices. Total volume of adipose tissue was calculated as a total volume of the three dimensional model and the mass estimated from volume measurements. The sheep were euthanized and pericardial adipose tissue was removed and weighed for comparison to the corresponding CMR measurements. Results: All CMR adipose tissue estimates significantly correlated with autopsy measurements (ICC > 0.80; p < 0.03). Intra- observer reliability in CMR measures was high, with 95% levels of agreement within 5.5% (ICC = 0.995) for total fat mass and its individual atrial (95% CI ± 8.3%, ICC = 0.993) and ventricular components (95% CI ± 6.6%, ICC = 0.989). Inter- observer 95% limits of agreement were within ± 10.7% (ICC = 0.979), 7.4% (ICC = 0.991) and 7.2% (ICC = 0.991) for atrial, ventricular and total pericardial adipose tissue, respectively. Conclusion: This study validates the use of a semi-automated three dimensional atrial PAT model utilizing standard (clinical) CMR sequences for accurate and reproducible assessment of atrial PAT. The measurement of local cardiac fat stores via this methodology could provide a sensitive tool to examine the regional effect of fat deposition on atrial substrate which potentially may influence AF ablation strategies in obese patients.
AB - Background: Recently pericardial adipose tissue (PAT) has been shown to be an independent predictor of atrial fibrillation (AF). Atrial PAT may influence underlying atrial musculature creating a substrate for AF. This study sought to validate the assessment of total and atrial PAT by standard cardiovascular magnetic resonance (CMR) measures and describe and validate a three dimensional atrial PAT model. Methods. 10 merino cross sheep underwent CMR using a 1.5 Tesla system (Siemens, Sonata, Erlangen, Germany). Atrial and ventricular short axis (SA) images were acquired, using ECG -gated steady state free precession sequences. In order to quantify total volume of adipose tissue, a three dimensional model was constructed from consecutive end-diastolic images using semi-automated software. Regions of adipose tissue were marked in each slice followed by linear interpolation of pixel intensities in spaces between consecutive image slices. Total volume of adipose tissue was calculated as a total volume of the three dimensional model and the mass estimated from volume measurements. The sheep were euthanized and pericardial adipose tissue was removed and weighed for comparison to the corresponding CMR measurements. Results: All CMR adipose tissue estimates significantly correlated with autopsy measurements (ICC > 0.80; p < 0.03). Intra- observer reliability in CMR measures was high, with 95% levels of agreement within 5.5% (ICC = 0.995) for total fat mass and its individual atrial (95% CI ± 8.3%, ICC = 0.993) and ventricular components (95% CI ± 6.6%, ICC = 0.989). Inter- observer 95% limits of agreement were within ± 10.7% (ICC = 0.979), 7.4% (ICC = 0.991) and 7.2% (ICC = 0.991) for atrial, ventricular and total pericardial adipose tissue, respectively. Conclusion: This study validates the use of a semi-automated three dimensional atrial PAT model utilizing standard (clinical) CMR sequences for accurate and reproducible assessment of atrial PAT. The measurement of local cardiac fat stores via this methodology could provide a sensitive tool to examine the regional effect of fat deposition on atrial substrate which potentially may influence AF ablation strategies in obese patients.
KW - Atrial
KW - CMR
KW - Pericardial adipose tissue
KW - Validation
UR - http://www.scopus.com/inward/record.url?scp=84883079512&partnerID=8YFLogxK
U2 - 10.1186/1532-429X-15-73
DO - 10.1186/1532-429X-15-73
M3 - Article
C2 - 24498950
AN - SCOPUS:84883079512
SN - 1097-6647
VL - 15
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
IS - 1
M1 - 73
ER -