TY - JOUR
T1 - Comparing co-morbidities in total joint arthroplasty patients using the RxRisk-V, Elixhauser, and Charlson Measures
T2 - A cross-sectional evaluation
AU - Inacio, Maria C S
AU - Pratt, Nicole L.
AU - Roughead, Elizabeth E.
AU - Graves, Stephen E.
N1 - Funding Information:
We acknowledge the provision of data for this study by the Australian Government Department of Veterans’ Affairs (DVA). The DVA reviewed the manuscript to be submitted for publication but played no role in the analysis or interpretation of the data or in the preparation of this manuscript. This work was supported by an Australian Government National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Post-Marketing Surveillance of Medicines and Medical Devices grant (GNT1040938). Nicole L. Pratt is supported by an NHMRC Early Career Fellowship (GNT1035889). No financial support or other benefits from commercial sources was received by any of the authors for the work reported on in the manuscript.
Publisher Copyright:
© 2015 Inacio et al.
PY - 2015/12/10
Y1 - 2015/12/10
N2 - Background: Joint arthroplasty patients have a high prevalence of co-morbidities and this impacts their surgical outcomes. There are different ways to ascertain co-morbidities and appropriate measurement is necessary. The purpose of this study was to: (1) describe the prevalence of co-morbidities in a cohort of total hip arthroplasty (THA) and knee arthroplasty (TKA) patients using two diagnoses-based measures (Charlson and Elixhauser) and one prescription-based measure (RxRisk-V); (2) compare the agreement of co-morbidities amongst the measures. Methods: A cross-sectional study of Australian veterans undergoing THAs (n = 11,848) and TKAs (n = 18,972) between 2001 and 2012 was conducted. Seventeen co-morbidities were identified using the Charlson, 30 using the Elixhauser, and 42 using the RxRisk-V measure. Agreement between co-morbidities was calculated using Kappa (κ) statistics. Results: Combining measures, 64 conditions were identified, of these 28 were only identified using the RxRisk-V, 11 using the Elixhauser, and 2 using the Charlson. The most prevalent conditions was pain treated with anti-inflammatories (58.7 % THAs, 55.9 % TKAs), pain treated with narcotics (55.0 % THAs, 50.9 % TKAs), hypertension (56.0 % THAs and TKAs), and anticoagulation disorders (53.0 % THAs, 48.6 % TKAs). Diabetes was the only condition with substantial agreement (all κ > 0.6) amongst all measures. When comparing the diagnoses based algorithms, agreement was high for overlapping conditions (all κ > 0.71). Conclusions: Different measures identified different co-morbidities, provided different estimates for the same co-morbidity, and had different levels of agreement for common co-morbidities. This highlights the importance of understanding co-morbidity measures and using them appropriately in studies and case-mix adjustments analyses.
AB - Background: Joint arthroplasty patients have a high prevalence of co-morbidities and this impacts their surgical outcomes. There are different ways to ascertain co-morbidities and appropriate measurement is necessary. The purpose of this study was to: (1) describe the prevalence of co-morbidities in a cohort of total hip arthroplasty (THA) and knee arthroplasty (TKA) patients using two diagnoses-based measures (Charlson and Elixhauser) and one prescription-based measure (RxRisk-V); (2) compare the agreement of co-morbidities amongst the measures. Methods: A cross-sectional study of Australian veterans undergoing THAs (n = 11,848) and TKAs (n = 18,972) between 2001 and 2012 was conducted. Seventeen co-morbidities were identified using the Charlson, 30 using the Elixhauser, and 42 using the RxRisk-V measure. Agreement between co-morbidities was calculated using Kappa (κ) statistics. Results: Combining measures, 64 conditions were identified, of these 28 were only identified using the RxRisk-V, 11 using the Elixhauser, and 2 using the Charlson. The most prevalent conditions was pain treated with anti-inflammatories (58.7 % THAs, 55.9 % TKAs), pain treated with narcotics (55.0 % THAs, 50.9 % TKAs), hypertension (56.0 % THAs and TKAs), and anticoagulation disorders (53.0 % THAs, 48.6 % TKAs). Diabetes was the only condition with substantial agreement (all κ > 0.6) amongst all measures. When comparing the diagnoses based algorithms, agreement was high for overlapping conditions (all κ > 0.71). Conclusions: Different measures identified different co-morbidities, provided different estimates for the same co-morbidity, and had different levels of agreement for common co-morbidities. This highlights the importance of understanding co-morbidity measures and using them appropriately in studies and case-mix adjustments analyses.
KW - Charlson
KW - Co-morbidities
KW - Elixhauser
KW - Pharmacy data
KW - RxRisk-V
KW - Total joint arthroplasty
UR - http://www.scopus.com/inward/record.url?scp=84951755287&partnerID=8YFLogxK
U2 - 10.1186/s12891-015-0835-4
DO - 10.1186/s12891-015-0835-4
M3 - Article
C2 - 26652166
AN - SCOPUS:84951755287
VL - 16
JO - BMC Musculoskeletal Disorders
JF - BMC Musculoskeletal Disorders
SN - 1471-2474
IS - 1
M1 - 835
ER -