Disruptions of the novel KIAA1202 gene are associated with X-linked mental retardation

Olivier Hagens, Aline Dubos, Fatima Abidi, Gotthold Barbi, Laura Van Zutven, Maria Hoeltzenbein, Niels Tommerup, Claude Moraine, Jean Pierre Fryns, Jamel Chelly, Hans van Bokhoven, Jozef Gécz, Hélène Dollfus, Hans Hilger Ropers, Charles E. Schwartz, Rita de Cassia Stocco dos Santos, Vera Kalscheuer, André Hanauer

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

The extensive heterogeneity underlying the genetic component of mental retardation (MR) is the main cause for our limited understanding of the aetiology of this highly prevalent condition. Hence we set out to identify genes involved in MR. We investigated the breakpoints of two balanced X;autosome translocations in two unrelated female patients with mild/moderate MR and found that the Xp11.2 breakpoints disrupt the novel human KIAA1202 (hKIAA1202) gene in both cases. We also identified a missense exchange in this gene, segregating with the Stocco dos Santos XLMR syndrome in a large four-generation pedigree but absent in >1,000 control X-chromosomes. Among other phenotypic characteristics, the affected males in this family present with severe MR, delayed or no speech, seizures and hyperactivity. Molecular studies of hKIAA1202 determined its genomic organisation, its expression throughout the brain and the regulation of expression of its mouse homologue during development. Transient expression of the wild-type KIAA1202 protein in HeLa cells showed partial colocalisation with the F-actin based cytoskeleton. On the basis of its domain structure, we argue that hKIAA1202 is a new member of the APX/Shroom protein family. Members of this family contain a PDZ and two ASD domains of unknown function and have been shown to localise at the cytoskeleton, and play a role in neurulation, cellular architecture, actin remodelling and ion channel function. Our results suggest that hKIAA1202 may be important in cognitive function and/or development.

Original languageEnglish
Pages (from-to)578-590
Number of pages13
JournalHuman Genetics
Volume118
Issue number5
DOIs
Publication statusPublished or Issued - Jan 2006
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

Cite this