TY - JOUR
T1 - Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects
AU - Ma, Jing
AU - Bellon, Max
AU - Wishart, Judith M.
AU - Young, Richard
AU - Blackshaw, L. Ashley
AU - Jones, Karen L.
AU - Horowitz, Michael
AU - Rayner, Christopher K.
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/4
Y1 - 2009/4
N2 - The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in glucose homeostasis in both health and diabetes. In mice, sucralose, an artificial sweetener, stimulates GLP-1 release via sweet taste receptors on enteroendocrine cells. We studied blood glucose, plasma levels of insulin, GLP-1, and GIP, and gastric emptying (by a breath test) in 7 healthy humans after intragastric infusions of 1) 50 g sucrose in water to a total volume of 500 ml (∼290 mosmol/l), 2) 80 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 0.4 mM sucralose), 3) 800 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 4 mM sucralose), and 4) 500 ml normal saline (∼300 mosmol/l), all labeled with 150 mg 13C-acetate. Blood glucose increased only in response to sucrose (P < 0.05). GLP-1, GIP, and insulin also increased after sucrose (P = 0.0001) but not after either load of sucralose or saline. Gastric emptying of sucrose was slower than that of saline (t50: 87.4 ± 4.1 min vs. 74.7 ± 3.2 min, P < 0.005), whereas there were no differences in t50 between sucralose 0.4 mM (73.7 ± 3.1 min) or 4 mM (76.7 ± 3.1 min) and saline. We conclude that sucralose, delivered by intragastric infusion, does not stimulate insulin, GLP-1, or GIP release or slow gastric emptying in healthy humans.
AB - The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in glucose homeostasis in both health and diabetes. In mice, sucralose, an artificial sweetener, stimulates GLP-1 release via sweet taste receptors on enteroendocrine cells. We studied blood glucose, plasma levels of insulin, GLP-1, and GIP, and gastric emptying (by a breath test) in 7 healthy humans after intragastric infusions of 1) 50 g sucrose in water to a total volume of 500 ml (∼290 mosmol/l), 2) 80 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 0.4 mM sucralose), 3) 800 mg sucralose in 500 ml normal saline (∼300 mosmol/l, 4 mM sucralose), and 4) 500 ml normal saline (∼300 mosmol/l), all labeled with 150 mg 13C-acetate. Blood glucose increased only in response to sucrose (P < 0.05). GLP-1, GIP, and insulin also increased after sucrose (P = 0.0001) but not after either load of sucralose or saline. Gastric emptying of sucrose was slower than that of saline (t50: 87.4 ± 4.1 min vs. 74.7 ± 3.2 min, P < 0.005), whereas there were no differences in t50 between sucralose 0.4 mM (73.7 ± 3.1 min) or 4 mM (76.7 ± 3.1 min) and saline. We conclude that sucralose, delivered by intragastric infusion, does not stimulate insulin, GLP-1, or GIP release or slow gastric emptying in healthy humans.
UR - http://www.scopus.com/inward/record.url?scp=67149121867&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.90708.2008
DO - 10.1152/ajpgi.90708.2008
M3 - Article
C2 - 19221011
AN - SCOPUS:67149121867
SN - 0193-1857
VL - 296
SP - G735-G739
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 4
ER -