Abstract
Uveitis, or intraocular inflammation, is a potentially blinding condition that mostly affects the working-age population. The cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, play a role in the pathogenesis of non-infectious uveitis and have been linked to the breakdown of the inner blood-retinal barrier, composed mainly of retinal endothelial cells, leading to macular oedema and vascular leakage. However, the effects of TNF-α and IL-1β on human retinal endothelial function are not fully understood. In this work, we investigated the impact of TNF-α and IL-1β on several aspects of human retinal endothelial cell biology. Through a real-time biosensor, the impact of TNF-α and IL-1β on formation of a retinal endothelial cell barrier was analyzed. Changes in junctional components were assessed via RT-qPCR and immunolabelling. Cell survival, necrosis and apoptosis were appraised via cell proliferation and flow cytometric studies. Tumor necrosis factor-α and IL-1β impaired the electrical resistance of the retinal endothelial cell barrier, while the addition of a potentially barrier-impairing cytokine, IL-6, did not enhance the effect of TNF-α and IL-1β. Level of the gene transcript encoding zonula occludens (ZO)-1 was diminished, while ZO-1 protein configuration was changed by TNF-α and IL-1β. Both cytokines affected human retinal endothelial cell proliferation and viability, while only TNF-α increased rates of necrosis. These results indicate that TNF-α and IL-1β are important drivers of retinal endothelial dysfunction in non-infectious uveitis, suggesting that targeting these cytokines is critical when treating complications of uveitis, such as macular oedema and vascular leakage.
Original language | English |
---|---|
Article number | 156407 |
Journal | Cytokine |
Volume | 173 |
DOIs | |
Publication status | Published or Issued - Jan 2024 |
Externally published | Yes |
Keywords
- Endothelial cell
- Endothelium
- IL-1β
- Retina
- TNF-α
- Uveitis
ASJC Scopus subject areas
- Immunology and Allergy
- Immunology
- Biochemistry
- Hematology
- Molecular Biology