TY - JOUR
T1 - Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors
AU - Gregory, R. B.
AU - Rychkov, G.
AU - Barritt, G. J.
N1 - Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 2001/3/1
Y1 - 2001/3/1
N2 - The compound 2-aminoethyl diphenylborate (2-APB), an inhibitor of Ins(1,4,5)P3 receptor action in some cell types, has been used to assess the role of Ins(1,4,5)P3 receptors in the activation of store-operated Ca2+ channels (SOCs) [Ma. Patterson, van Rossum, Birnbaumer, Mikoshiba and Gill (2000) Science 287. 1647 1651]. In freshly-isolated rat hepatocytes, 2-APB inhibited thapsigargin- and vasopressin-stimulated Ca2+ inflow (measured using fura-2) with no detectable effect on the release of Ca2+ from intracellular stores. The concentration of 2-APB which gave half-maximal inhibition of Ca2+ inflow was approx. 10μM. 2-APB also inhibited Ca2+inflow initiated by a low concentration of adenophostin A but had no effect on maitotoxin-stimulated Ca2+ inflow through non-selective cation channels. The onset of the inhibitory effect of 2-APB on thapsigargin-stimulated Ca2+ inflow was rapid. When 2-APB was added to rat hepatocytes in the presence of extracellular Ca2+ after a vasopressin-induced plateau in the cytoplasmic free Ca2+ concentration ([Ca2+]cyt) had been established, the kinetics of the decrease in [Ca2+]cyt were identical with those induced by the addition of 50μM Gd3+ (gadolinium). 2-APB did not inhibit the release of Ca2+ from intracellular stores induced by the addition of Ins(1,4,5)P3 to permeabilized hepatocytes. In the H4-IIE rat hepatoma cell line. 2-APB inhibited thapsigargin-stimulated Ca2+ inflow (measured using fura-2) and, in whole-cell patch-clamp experiments, the Ins(1,4,5)P3-induced inward current carried by Ca2+. It was concluded that, in liver cells, 2-APB inhibited SOCs through a mechanism which involved the binding of 2-APB to either the channel protein or an associated regulatory protein. 2-APB appeared to be a novel inhibitor of SOCs in liver cells with a mechanism of action which, in this cell type, is unlikely to involve an interaction of 2-APB with Ins(1,4,5)P3 receptors. The need for caution in the use of 2-APB as a probe for the involvement of Ins(1,4,5)P3 receptors in the activation of SOCs in other cell types is briefly discussed.
AB - The compound 2-aminoethyl diphenylborate (2-APB), an inhibitor of Ins(1,4,5)P3 receptor action in some cell types, has been used to assess the role of Ins(1,4,5)P3 receptors in the activation of store-operated Ca2+ channels (SOCs) [Ma. Patterson, van Rossum, Birnbaumer, Mikoshiba and Gill (2000) Science 287. 1647 1651]. In freshly-isolated rat hepatocytes, 2-APB inhibited thapsigargin- and vasopressin-stimulated Ca2+ inflow (measured using fura-2) with no detectable effect on the release of Ca2+ from intracellular stores. The concentration of 2-APB which gave half-maximal inhibition of Ca2+ inflow was approx. 10μM. 2-APB also inhibited Ca2+inflow initiated by a low concentration of adenophostin A but had no effect on maitotoxin-stimulated Ca2+ inflow through non-selective cation channels. The onset of the inhibitory effect of 2-APB on thapsigargin-stimulated Ca2+ inflow was rapid. When 2-APB was added to rat hepatocytes in the presence of extracellular Ca2+ after a vasopressin-induced plateau in the cytoplasmic free Ca2+ concentration ([Ca2+]cyt) had been established, the kinetics of the decrease in [Ca2+]cyt were identical with those induced by the addition of 50μM Gd3+ (gadolinium). 2-APB did not inhibit the release of Ca2+ from intracellular stores induced by the addition of Ins(1,4,5)P3 to permeabilized hepatocytes. In the H4-IIE rat hepatoma cell line. 2-APB inhibited thapsigargin-stimulated Ca2+ inflow (measured using fura-2) and, in whole-cell patch-clamp experiments, the Ins(1,4,5)P3-induced inward current carried by Ca2+. It was concluded that, in liver cells, 2-APB inhibited SOCs through a mechanism which involved the binding of 2-APB to either the channel protein or an associated regulatory protein. 2-APB appeared to be a novel inhibitor of SOCs in liver cells with a mechanism of action which, in this cell type, is unlikely to involve an interaction of 2-APB with Ins(1,4,5)P3 receptors. The need for caution in the use of 2-APB as a probe for the involvement of Ins(1,4,5)P3 receptors in the activation of SOCs in other cell types is briefly discussed.
KW - Gadolinium (Gd)
KW - H4-IIE cells
KW - Maitotoxin
KW - Patch-clamp recording
KW - Rat hepatocytes
UR - http://www.scopus.com/inward/record.url?scp=0035281595&partnerID=8YFLogxK
U2 - 10.1042/0264-6021:3540285
DO - 10.1042/0264-6021:3540285
M3 - Article
C2 - 11171105
AN - SCOPUS:0035281595
SN - 0264-6021
VL - 354
SP - 285
EP - 290
JO - Biochemical Journal
JF - Biochemical Journal
IS - 2
ER -