TY - JOUR
T1 - High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor Class B Type i
AU - Tan, Joanne T.M.
AU - Prosser, Hamish C.G.
AU - Dunn, Louise L.
AU - Vanags, Laura Z.
AU - Ridiandries, Anisyah
AU - Tsatralis, Tania
AU - Leece, Laura
AU - Clayton, Zoë E.
AU - Yuen, Sui Ching G.
AU - Robertson, Stacy
AU - Ting Lam, Yuen
AU - Celermajer, David S.
AU - Ng, Martin K.C.
AU - Bursill, Christina A.
N1 - Publisher Copyright:
© 2016 by the American Diabetes Association.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Disordered neovascularization and impaired wound healing are important contributors to diabetic vascular complications. We recently showed that high-density lipoproteins (HDLs) enhance ischemia-mediated neovascularization, and mounting evidence suggests HDL have antidiabetic properties. We therefore hypothesized that HDL rescue diabetes-impaired neovascularization. Streptozotocin-induced diabetic mice had reduced blood flow recovery and neovessel formation in a hindlimb ischemia model compared with nondiabetic mice. Reconstituted HDL (rHDL) infusions in diabetic mice restored blood flow recovery and capillary density to nondiabetic levels. Topical rHDL application rescued diabetes-impaired wound closure, wound angiogenesis, and capillary density. In vitro, rHDL increased keymediators involved in hypoxia-inducible factor-1α (HIF-1α) stabilization, including the phosphoinositide 3-kinase/Akt pathway, Siah1, and Siah2, and suppressed the prolyl hydroxylases (PHD) 2 and PHD3. rHDL rescued high glucose-induced impairment of tubulogenesis and vascular endothelial growth factor (VEGF) A protein production, a finding associated with enhanced phosphorylation of proangiogenic mediators VEGF receptor 2 and endothelial nitric oxide synthase. Siah1/2 small interfering RNA knockdown confirmed the importance of HIF-1a stability in mediating rHDL action. Lentiviral short hairpin RNA knockdown of scavenger receptor class B type I (SR-BI) in vitro and SR-BI-/- diabetic mice in vivo attenuated rHDL rescue of diabetes-impaired angiogenesis, indicating a key role for SR-BI. These findings provide a greater understanding of the vascular biological effects of HDL, with potential therapeutic implications for diabetic vascular complications.
AB - Disordered neovascularization and impaired wound healing are important contributors to diabetic vascular complications. We recently showed that high-density lipoproteins (HDLs) enhance ischemia-mediated neovascularization, and mounting evidence suggests HDL have antidiabetic properties. We therefore hypothesized that HDL rescue diabetes-impaired neovascularization. Streptozotocin-induced diabetic mice had reduced blood flow recovery and neovessel formation in a hindlimb ischemia model compared with nondiabetic mice. Reconstituted HDL (rHDL) infusions in diabetic mice restored blood flow recovery and capillary density to nondiabetic levels. Topical rHDL application rescued diabetes-impaired wound closure, wound angiogenesis, and capillary density. In vitro, rHDL increased keymediators involved in hypoxia-inducible factor-1α (HIF-1α) stabilization, including the phosphoinositide 3-kinase/Akt pathway, Siah1, and Siah2, and suppressed the prolyl hydroxylases (PHD) 2 and PHD3. rHDL rescued high glucose-induced impairment of tubulogenesis and vascular endothelial growth factor (VEGF) A protein production, a finding associated with enhanced phosphorylation of proangiogenic mediators VEGF receptor 2 and endothelial nitric oxide synthase. Siah1/2 small interfering RNA knockdown confirmed the importance of HIF-1a stability in mediating rHDL action. Lentiviral short hairpin RNA knockdown of scavenger receptor class B type I (SR-BI) in vitro and SR-BI-/- diabetic mice in vivo attenuated rHDL rescue of diabetes-impaired angiogenesis, indicating a key role for SR-BI. These findings provide a greater understanding of the vascular biological effects of HDL, with potential therapeutic implications for diabetic vascular complications.
UR - http://www.scopus.com/inward/record.url?scp=84989159561&partnerID=8YFLogxK
U2 - 10.2337/db15-1668
DO - 10.2337/db15-1668
M3 - Article
C2 - 27284113
AN - SCOPUS:84989159561
SN - 0012-1797
VL - 65
SP - 3091
EP - 3103
JO - Diabetes
JF - Diabetes
IS - 10
ER -