TY - JOUR
T1 - Identification and characterization of a missense mutation in the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability
AU - Vaidyanathan, Krithika
AU - Niranjan, Tejasvi
AU - Selvan, Nithya
AU - Teo, Chin Fen
AU - May, Melanie
AU - Patel, Sneha
AU - Weatherly, Brent
AU - Skinner, Cindy
AU - Opitz, John
AU - Carey, John
AU - Viskochil, David
AU - Gecz, Jozef
AU - Shaw, Marie
AU - Peng, Yunhui
AU - Alexov, Emil
AU - Wang, Tao
AU - Schwartz, Charles
AU - Wells, Lance
N1 - Publisher Copyright:
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
PY - 2017/5/26
Y1 - 2017/5/26
N2 - O-GlcNAc is a regulatory post-translational modification of nucleocytoplasmic proteins that has been implicated in multiple biological processes, including transcription. In humans, single genes encode enzymes for its attachment (O-GlcNAc transferase (OGT)) and removal (O-GlcNAcase (OGA)). An X-chromosome exome screen identified a missense mutation, which encodes an amino acid in the tetratricopeptide repeat, in OGT (759G>T (p.L254F)) that segregates with X-linked intellectual disability (XLID) in an affected family. A decrease in steadystate OGT protein levels was observed in isolated lymphoblastoid cell lines from affected individuals, consistent with molecular modeling experiments. Recombinant expression of L254F-OGT demonstrated that the enzyme is active as both a glycosyltransferase and an HCF-1 protease. Despite the reduction in OGT levels seen in the L254F-OGT individual cells, we observed that steady-state global O-GlcNAc levels remained grossly unaltered. Surprisingly, lymphoblastoids from affected individuals displayed a marked decrease in steady-state OGA protein and mRNA levels. We observed an enrichment of the OGT-containing transcriptional repressor complex mSin3AHDAC1 at the proximal promoter region of OGA and correspondingly decreased OGA promoter activity in affected cells. Global transcriptome analysis of L254F-OGT lymphoblastoids compared with controls revealed a small subset of genes that are differentially expressed. Thus, we have begun to unravel the molecular consequences of the 759G>T (p.L254F) mutation in OGT that uncovered a compensation mechanism, albeit imperfect, given the phenotype of affected individuals, to maintain steady-state O-GlcNAc levels. Thus, a single amino acid substitution in the regulatory domain (the tetratricopeptide repeat domain) of OGT, which catalyzes the O-GlcNAc post-translational modification of nuclear and cytosolic proteins, appears causal for XLID.
AB - O-GlcNAc is a regulatory post-translational modification of nucleocytoplasmic proteins that has been implicated in multiple biological processes, including transcription. In humans, single genes encode enzymes for its attachment (O-GlcNAc transferase (OGT)) and removal (O-GlcNAcase (OGA)). An X-chromosome exome screen identified a missense mutation, which encodes an amino acid in the tetratricopeptide repeat, in OGT (759G>T (p.L254F)) that segregates with X-linked intellectual disability (XLID) in an affected family. A decrease in steadystate OGT protein levels was observed in isolated lymphoblastoid cell lines from affected individuals, consistent with molecular modeling experiments. Recombinant expression of L254F-OGT demonstrated that the enzyme is active as both a glycosyltransferase and an HCF-1 protease. Despite the reduction in OGT levels seen in the L254F-OGT individual cells, we observed that steady-state global O-GlcNAc levels remained grossly unaltered. Surprisingly, lymphoblastoids from affected individuals displayed a marked decrease in steady-state OGA protein and mRNA levels. We observed an enrichment of the OGT-containing transcriptional repressor complex mSin3AHDAC1 at the proximal promoter region of OGA and correspondingly decreased OGA promoter activity in affected cells. Global transcriptome analysis of L254F-OGT lymphoblastoids compared with controls revealed a small subset of genes that are differentially expressed. Thus, we have begun to unravel the molecular consequences of the 759G>T (p.L254F) mutation in OGT that uncovered a compensation mechanism, albeit imperfect, given the phenotype of affected individuals, to maintain steady-state O-GlcNAc levels. Thus, a single amino acid substitution in the regulatory domain (the tetratricopeptide repeat domain) of OGT, which catalyzes the O-GlcNAc post-translational modification of nuclear and cytosolic proteins, appears causal for XLID.
UR - http://www.scopus.com/inward/record.url?scp=85019736083&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.771030
DO - 10.1074/jbc.M116.771030
M3 - Article
C2 - 28302723
AN - SCOPUS:85019736083
SN - 0021-9258
VL - 292
SP - 8948
EP - 8963
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 21
ER -