TY - JOUR
T1 - Mucopolysaccharidosis VI in cats - clarification regarding genetic testing
AU - Lyons, Leslie A.
AU - Grahn, Robert A.
AU - Genova, Francesca
AU - Beccaglia, Michela
AU - Hopwood, John J.
AU - Longeri, Maria
N1 - Funding Information:
Vetogene and P.Valiati for technical assistance. This work was supported in part by funding from the National Center for Research Resources R24 RR016094 and is currently supported by the Office of Research Infrastructure Programs/OD R24OD010928 (LAL) and the University of California – Davis, Veterinary Genetics Laboratory (LAL, RAG).
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/7/2
Y1 - 2016/7/2
N2 - The release of new DNA-based diagnostic tools has increased tremendously in companion animals. Over 70 different DNA variants are now known for the cat, including DNA variants in disease-associated genes and genes causing aesthetically interesting traits. The impact genetic tests have on animal breeding and health management is significant because of the ability to control the breeding of domestic cats, especially breed cats. If used properly, genetic testing can prevent the production of diseased animals, causing the reduction of the frequency of the causal variant in the population, and, potentially, the eventual eradication of the disease. However, testing of some identified DNA variants may be unwarranted and cause undo strife within the cat breeding community and unnecessary reduction of gene pools and availability of breeding animals. Testing for mucopolysaccharidosis Type VI (MPS VI) in cats, specifically the genetic testing of the L476P (c.1427T>C) and the D520N (c.1558G>A) variants in arylsulfatase B (ARSB), has come under scrutiny. No health problems are associated with the D520N (c.1558G>A) variant, however, breeders that obtain positive results for this variant are speculating as to possible correlation with health concerns. Birman cats already have a markedly reduced gene pool and have a high frequency of the MPS VI D520N variant. Further reduction of the gene pool by eliminating cats that are heterozygous or homozygous for only the MPS VI D520N variant could lead to more inbreeding depression effects on the breed population. Herein is debated the genetic testing of the MPS VI D520N variant in cats. Surveys from different laboratories suggest the L476P (c.1427T>C) disease-associated variant should be monitored in the cat breed populations, particularly breeds with Siamese derivations and outcrosses. However, the D520N has no evidence of association with disease in cats and testing is not recommended in the absence of L476P genotyping. Selection against the D520N is not warranted in cat populations. More rigorous guidelines may be required to support the genetic testing of DNA variants in all animal species.
AB - The release of new DNA-based diagnostic tools has increased tremendously in companion animals. Over 70 different DNA variants are now known for the cat, including DNA variants in disease-associated genes and genes causing aesthetically interesting traits. The impact genetic tests have on animal breeding and health management is significant because of the ability to control the breeding of domestic cats, especially breed cats. If used properly, genetic testing can prevent the production of diseased animals, causing the reduction of the frequency of the causal variant in the population, and, potentially, the eventual eradication of the disease. However, testing of some identified DNA variants may be unwarranted and cause undo strife within the cat breeding community and unnecessary reduction of gene pools and availability of breeding animals. Testing for mucopolysaccharidosis Type VI (MPS VI) in cats, specifically the genetic testing of the L476P (c.1427T>C) and the D520N (c.1558G>A) variants in arylsulfatase B (ARSB), has come under scrutiny. No health problems are associated with the D520N (c.1558G>A) variant, however, breeders that obtain positive results for this variant are speculating as to possible correlation with health concerns. Birman cats already have a markedly reduced gene pool and have a high frequency of the MPS VI D520N variant. Further reduction of the gene pool by eliminating cats that are heterozygous or homozygous for only the MPS VI D520N variant could lead to more inbreeding depression effects on the breed population. Herein is debated the genetic testing of the MPS VI D520N variant in cats. Surveys from different laboratories suggest the L476P (c.1427T>C) disease-associated variant should be monitored in the cat breed populations, particularly breeds with Siamese derivations and outcrosses. However, the D520N has no evidence of association with disease in cats and testing is not recommended in the absence of L476P genotyping. Selection against the D520N is not warranted in cat populations. More rigorous guidelines may be required to support the genetic testing of DNA variants in all animal species.
KW - ARSB
KW - DNA
KW - Feline
KW - Felis silvestris catus
KW - Genetic testing
KW - MPS VI
KW - N-acetylgalactosamine-4-sulfatase
UR - http://www.scopus.com/inward/record.url?scp=84976877543&partnerID=8YFLogxK
U2 - 10.1186/s12917-016-0764-y
DO - 10.1186/s12917-016-0764-y
M3 - Article
C2 - 27370326
AN - SCOPUS:84976877543
VL - 12
JO - BMC Veterinary Research
JF - BMC Veterinary Research
SN - 1746-6148
IS - 1
M1 - 136
ER -