TY - JOUR
T1 - Network of vascular diseases, death and biochemical characteristics in a set of 4,197 patients with type 1 diabetes (The FinnDiane Study)
AU - Mäkinen, Ville Petteri
AU - Forsblom, Carol
AU - Thorn, Lena M.
AU - Wadén, Johan
AU - Kaski, Kimmo
AU - Ala-Korpela, Mika
AU - Groop, Per Henrik
N1 - Funding Information:
Blood and urine samples and medical records were collected by the Finnish Diabetic Nephropathy Study Group [Additional file 3]. The study was supported by grants from the Folkhälsan Research Foundation, the Finnish Cultural Foundation, the Wilhelm and Else Stockmann Foundation, the Liv och Hälsa Foundation and the European Commission (QLG2-CT-2001-01669, LSHB-CT-2003-503364, LSHB-CT-2006-037681). The work was also supported by the Center of Excellence (KK, VPM) and the SALVE (MAK) programs of the Academy of Finland.
PY - 2009/10/6
Y1 - 2009/10/6
N2 - Background: Cardiovascular disease is the main cause of premature death in patients with type 1 diabetes. Patients with diabetic kidney disease have an increased risk of heart attack or stroke. Accurate knowledge of the complex inter-dependencies between the risk factors is critical for pinpointing the best targets for research and treatment. Therefore, the aim of this study was to describe the association patterns between clinical and biochemical features of diabetic complications. Methods: Medical records and serum and urine samples of 4,197 patients with type 1 diabetes were collected from health care centers in Finland. At baseline, the mean diabetes duration was 22 years, 52% were male, 23% had kidney disease (urine albumin excretion over 300 mg/24 h or end-stage renal disease) and 8% had a history of macrovascular events. All-cause mortality was evaluated after an average of 6.5 years of follow-up (25,714 patient years). The dataset comprised 28 clinical and 25 biochemical variables that were regarded as the nodes of a network to assess their mutual relationships. Results The networks contained cliques that were densely inter-connected (r > 0.6), including cliques for high-density lipoprotein (HDL) markers, for triglycerides and cholesterol, for urinary excretion and for indices of body mass. The links between the cliques showed biologically relevant interactions: an inverse relationship between HDL cholesterol and the triglyceride clique (r < -0.3, P < 10-16), a connection between triglycerides and body mass via C-reactive protein (r > 0.3, P < 10-16) and intermediate-density cholesterol as the connector between lipoprotein metabolism and albuminuria (r > 0.3, P < 10-16). Aging and macrovascular disease were linked to death via working ability and retinopathy. Diabetic kidney disease, serum creatinine and potassium, retinopathy and blood pressure were inter-connected. Blood pressure correlations indicated accelerated vascular aging in individuals with kidney disease (P < 0.001). Conclusion The complex pattern of links between diverse characteristics and the lack of a single dominant factor suggests a need for multifactorial and multidisciplinary paradigms for the research, treatment and prevention of diabetic complications.
AB - Background: Cardiovascular disease is the main cause of premature death in patients with type 1 diabetes. Patients with diabetic kidney disease have an increased risk of heart attack or stroke. Accurate knowledge of the complex inter-dependencies between the risk factors is critical for pinpointing the best targets for research and treatment. Therefore, the aim of this study was to describe the association patterns between clinical and biochemical features of diabetic complications. Methods: Medical records and serum and urine samples of 4,197 patients with type 1 diabetes were collected from health care centers in Finland. At baseline, the mean diabetes duration was 22 years, 52% were male, 23% had kidney disease (urine albumin excretion over 300 mg/24 h or end-stage renal disease) and 8% had a history of macrovascular events. All-cause mortality was evaluated after an average of 6.5 years of follow-up (25,714 patient years). The dataset comprised 28 clinical and 25 biochemical variables that were regarded as the nodes of a network to assess their mutual relationships. Results The networks contained cliques that were densely inter-connected (r > 0.6), including cliques for high-density lipoprotein (HDL) markers, for triglycerides and cholesterol, for urinary excretion and for indices of body mass. The links between the cliques showed biologically relevant interactions: an inverse relationship between HDL cholesterol and the triglyceride clique (r < -0.3, P < 10-16), a connection between triglycerides and body mass via C-reactive protein (r > 0.3, P < 10-16) and intermediate-density cholesterol as the connector between lipoprotein metabolism and albuminuria (r > 0.3, P < 10-16). Aging and macrovascular disease were linked to death via working ability and retinopathy. Diabetic kidney disease, serum creatinine and potassium, retinopathy and blood pressure were inter-connected. Blood pressure correlations indicated accelerated vascular aging in individuals with kidney disease (P < 0.001). Conclusion The complex pattern of links between diverse characteristics and the lack of a single dominant factor suggests a need for multifactorial and multidisciplinary paradigms for the research, treatment and prevention of diabetic complications.
UR - http://www.scopus.com/inward/record.url?scp=70449516720&partnerID=8YFLogxK
U2 - 10.1186/1475-2840-8-54
DO - 10.1186/1475-2840-8-54
M3 - Article
C2 - 19804653
AN - SCOPUS:70449516720
SN - 1475-2840
VL - 8
SP - 54
JO - Cardiovascular Diabetology
JF - Cardiovascular Diabetology
M1 - 1475
ER -