TY - JOUR
T1 - Patients with type 1 diabetes show signs of vascular dysfunction in response to multiple high-fat meals
AU - Lassenius, Mariann I.
AU - Mäkinen, Ville Petteri
AU - Fogarty, Christopher L.
AU - Peräneva, Lina
AU - Jauhiainen, Matti
AU - Pussinen, Pirkko J.
AU - Taskinen, Marja Riitta
AU - Kirveskari, Juha
AU - Vaarala, Outi
AU - Nieminen, Janne K.
AU - Hörkkö, Sohvi
AU - Kangas, Antti J.
AU - Soininen, Pasi
AU - Ala-Korpela, Mika
AU - Gordin, Daniel
AU - Ahola, Aila J.
AU - Forsblom, Carol
AU - Groop, Per Henrik
AU - Lehto, Markku
N1 - Funding Information:
We acknowledge the nurses Anna Sandelin, Jaana Tuomikangas and Tuula Soppela at the Folkhälsan Institute of Genetics, Hannele Hilden and Helinä Perttunen-Nio at the Heart and Lung Center, and Sari Nuutinen and Jari Metso at the National Institute for Health and Wellfare for technical assistance. This study was supported by Folkhälsan Research Foundation (PHG), Wilhelm and Else Stockmann Foundation (MIL, PHG, ML), Liv och Hälsa Foundation (MIL, PHG), Waldemar von Frenckells stiftelse (MIL), Academy of Finland (134379 to PHG, 257545 to MJ), Diabetes Research Foundation (ML), the Novo Nordisk Foundation (PHG, ML), Finnish Cardiovascular Foundation (SH), Helsinki University Central Hospital Research Foundation (MRT), Academy of Finland (PS), TEKES - the Finnish Funding Agency for Technology and Innovation (MAK), the Sigrid Juselius Foundation (MRT, PJP, SH, MAK), and the Strategic Research Funding from the University of Oulu (MAK), Svenska kulturfonden (MIL), Kyllikki ja Uolevi Lehikoinen Foundation (MIL).
PY - 2014/6/13
Y1 - 2014/6/13
N2 - Background: A high-fat diet promotes postprandial systemic inflammation and metabolic endotoxemia. We investigated the effects of three consecutive high-fat meals on endotoxemia, inflammation, vascular function, and postprandial lipid metabolism in patients with type 1 diabetes. Methods. Non-diabetic controls (n = 34) and patients with type 1 diabetes (n = 37) were given three high-caloric, fat-containing meals during one day. Blood samples were drawn at fasting (8:00) and every two hours thereafter until 18:00. Applanation tonometry was used to assess changes in the augmentation index during the investigation day. Results: Three consecutive high-fat meals had only a modest effect on serum LPS-activity levels and inflammatory markers throughout the day in both groups. Of note, patients with type 1 diabetes were unable to decrease the augmentation index in response to the high-fat meals. The most profound effects of the consecutive fat loads were seen in chylomicron and HDL-metabolism. The triglyceride-rich lipoprotein remnant marker, apoB-48, was elevated in patients compared to controls both at fasting (p = 0.014) and postprandially (p = 0.035). The activities of the HDL-associated enzymes PLTP (p < 0.001), and CETP (p = 0.007) were higher and paraoxonase (PON-1) activity, an anti-oxidative enzyme bound to HDL, decreased in patients with type 1 diabetes (p = 0.027). Conclusions: In response to high-fat meals, early signs of vascular dysfunction alongside accumulation of chylomicron remnants, higher augmentation index, and decreased PON-1 activity were observed in patients with type 1 diabetes. The high-fat meals had no significant impact on postprandial LPS-activity in non-diabetic subjects or patients with type 1 diabetes suggesting that metabolic endotoxemia may be more central in patients with chronic metabolic disturbances such as obesity, type 2 diabetes, or diabetic kidney disease.
AB - Background: A high-fat diet promotes postprandial systemic inflammation and metabolic endotoxemia. We investigated the effects of three consecutive high-fat meals on endotoxemia, inflammation, vascular function, and postprandial lipid metabolism in patients with type 1 diabetes. Methods. Non-diabetic controls (n = 34) and patients with type 1 diabetes (n = 37) were given three high-caloric, fat-containing meals during one day. Blood samples were drawn at fasting (8:00) and every two hours thereafter until 18:00. Applanation tonometry was used to assess changes in the augmentation index during the investigation day. Results: Three consecutive high-fat meals had only a modest effect on serum LPS-activity levels and inflammatory markers throughout the day in both groups. Of note, patients with type 1 diabetes were unable to decrease the augmentation index in response to the high-fat meals. The most profound effects of the consecutive fat loads were seen in chylomicron and HDL-metabolism. The triglyceride-rich lipoprotein remnant marker, apoB-48, was elevated in patients compared to controls both at fasting (p = 0.014) and postprandially (p = 0.035). The activities of the HDL-associated enzymes PLTP (p < 0.001), and CETP (p = 0.007) were higher and paraoxonase (PON-1) activity, an anti-oxidative enzyme bound to HDL, decreased in patients with type 1 diabetes (p = 0.027). Conclusions: In response to high-fat meals, early signs of vascular dysfunction alongside accumulation of chylomicron remnants, higher augmentation index, and decreased PON-1 activity were observed in patients with type 1 diabetes. The high-fat meals had no significant impact on postprandial LPS-activity in non-diabetic subjects or patients with type 1 diabetes suggesting that metabolic endotoxemia may be more central in patients with chronic metabolic disturbances such as obesity, type 2 diabetes, or diabetic kidney disease.
KW - High-fat diet
KW - Type 1 diabetes
KW - Vascular dysfunction
UR - http://www.scopus.com/inward/record.url?scp=84902072332&partnerID=8YFLogxK
U2 - 10.1186/1743-7075-11-28
DO - 10.1186/1743-7075-11-28
M3 - Article
AN - SCOPUS:84902072332
SN - 1743-7075
VL - 11
JO - Nutrition and Metabolism
JF - Nutrition and Metabolism
IS - 1
M1 - 28
ER -