Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort

Carolina Bonilla, Sarah J. Lewis, Richard M. Martin, Jenny L. Donovan, Freddie C. Hamdy, David E. Neal, Rosalind Eeles, Doug Easton, Zsofia Kote-Jarai, Ali Amin Al Olama, Sara Benlloch, Kenneth Muir, Graham G. Giles, Fredrik Wiklund, Henrik Gronberg, Christopher A. Haiman, Johanna Schleutker, Børge G. Nordestgaard, Ruth C. Travis, Nora PashayanKay Tee Khaw, Janet L. Stanford, William J. Blot, Stephen Thibodeau, Christiane Maier, Adam S. Kibel, Cezary Cybulski, Lisa Cannon-Albright, Hermann Brenner, Jong Park, Radka Kaneva, Jyotsna Batra, Manuel R. Teixeira, Hardev Pandha, Mark Lathrop, George Davey Smith, Margaret Cook, Angela Morga, Artitaya Lophatananon, Cyril Fisher, Daniel Leongamornlert, Edward J. Saunders, Emma J. Sawyer, Koveela Govindasami, Malgorzata Tymrakiewicz, Michelle Guy, Naomi Livni, Rosemary Wilkinson, Sara Jugurnauth-Little, Pamela Saunders, The PRACTICAL consortium

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

Background: Epidemiological studies have observed a positive association between an earlier age at sexual development and prostate cancer, but markers of sexual maturation in boys are imprecise and observational estimates are likely to suffer from a degree of uncontrolled confounding. To obtain causal estimates, we examined the role of pubertal development in prostate cancer using genetic polymorphisms associated with Tanner stage in adolescent boys in a Mendelian randomization (MR) approach. Methods: We derived a weighted genetic risk score for pubertal development, combining 13 SNPs associated with male Tanner stage. A higher score indicated a later puberty onset. We examined the association of this score with prostate cancer risk, stage and grade in the UK-based ProtecT case-control study (n = 2,927), and used the PRACTICAL consortium (n = 43,737) as a replication sample. Results: In ProtecT, the puberty genetic score was inversely associated with prostate cancer grade (odds ratio (OR) of high- vs. low-grade cancer, per tertile of the score: 0.76; 95 % CI, 0.64-0.89). In an instrumental variable estimation of the causal OR, later physical development in adolescence (equivalent to a difference of one Tanner stage between pubertal boys of the same age) was associated with a 77 % (95 % CI, 43-91 %) reduced odds of high Gleason prostate cancer. In PRACTICAL, the puberty genetic score was associated with prostate cancer stage (OR of advanced vs. localized cancer, per tertile: 0.95; 95 % CI, 0.91-1.00) and prostate cancer-specific mortality (hazard ratio amongst cases, per tertile: 0.94; 95 % CI, 0.90-0.98), but not with disease grade. Conclusions: Older age at sexual maturation is causally linked to a reduced risk of later prostate cancer, especially aggressive disease.

Original languageEnglish
Article number66
JournalBMC Medicine
Volume14
Issue number1
DOIs
Publication statusPublished or Issued - 2016

Keywords

  • Boys
  • Mendelian randomization
  • Prostate cancer
  • Puberty
  • Tanner scale

ASJC Scopus subject areas

  • Medicine(all)

Cite this