TY - JOUR
T1 - Spatial variability in factors influencing maternal health service use in Jimma Zone, Ethiopia
T2 - a geographically-weighted regression analysis
AU - Kurji, Jaameeta
AU - Thickstun, Charles
AU - Bulcha, Gebeyehu
AU - Taljaard, Monica
AU - Li, Ziqi
AU - Kulkarni, Manisha A.
N1 - Funding Information:
We are grateful to the communities who have been generous with their time and thoughts and without whom this trial would not be possible. A special thanks to Professor Stewart Fotheringham for thoughtfully and quickly answering several questions related to analysis. We would also like to express gratitude to Dr. Benoit Talbot who helped to work on generating path distances for earlier spatial analyses planned but ultimately not used. The authors would like to acknowledge the trial investigators from University of Ottawa (Prof Ronald Labonte) and Jimma University (Lakew Abebe Gebretsadik, Prof Sudhakar Morankar, Dr. Muluemebet Abera and Kunuz Bedru Haji) as well as the broader research team (Getachew Kiros, Abebe Mamo, Shifera Asfaw, Yisalemush Asefa, Gemechu Abene, Erko Endale, Nicole Bergen & Corinne Packer).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/5/12
Y1 - 2021/5/12
N2 - Background: Persisting within-country disparities in maternal health service access are significant barriers to attaining the Sustainable Development Goals aimed at reducing inequalities and ensuring good health for all. Sub-national decision-makers mandated to deliver health services play a central role in advancing equity but require appropriate evidence to craft effective responses. We use spatial analyses to identify locally-relevant barriers to access using sub-national data from rural areas in Jimma Zone, Ethiopia. Methods: Cross-sectional data from 3727 households, in three districts, collected at baseline in a cluster randomized controlled trial were analysed using geographically-weighted regressions. These models help to quantify associations within women’s proximal contexts by generating local parameter estimates. Data subsets, representing an empirically-identified scale for neighbourhood, were used. Local associations between outcomes (antenatal, delivery, and postnatal care use) and potential explanatory factors at individual-level (ex: health information source), interpersonal-level (ex: companion support availability) and health service-levels (ex: nearby health facility type) were modelled. Statistically significant local odds ratios were mapped to demonstrate how relevance and magnitude of associations between various explanatory factors and service outcomes change depending on locality. Results: Significant spatial variability in relationships between all services and their explanatory factors (p < 0.001) was detected, apart from the association between delivery care and women’s decision-making involvement (p = 0.124). Local models helped to pinpoint factors, such as danger sign awareness, that were relevant for some localities but not others. Among factors with more widespread influence, such as that of prior service use, variation in estimate magnitudes between localities was uncovered. Prominence of factors also differed between services; companion support, for example, had wider influence for delivery than postnatal care. No significant local associations with postnatal care use were detected for some factors, including wealth and decision involvement, at the selected neighbourhood scale. Conclusions: Spatial variability in service use associations means that the relative importance of explanatory factors changes with locality. These differences have important implications for the design of equity-oriented and responsive health systems. Reductions in within-country disparities are also unlikely if uniform solutions are applied to heterogeneous contexts. Multi-scale models, accommodating factor-specific neighbourhood scaling, may help to improve estimated local associations.
AB - Background: Persisting within-country disparities in maternal health service access are significant barriers to attaining the Sustainable Development Goals aimed at reducing inequalities and ensuring good health for all. Sub-national decision-makers mandated to deliver health services play a central role in advancing equity but require appropriate evidence to craft effective responses. We use spatial analyses to identify locally-relevant barriers to access using sub-national data from rural areas in Jimma Zone, Ethiopia. Methods: Cross-sectional data from 3727 households, in three districts, collected at baseline in a cluster randomized controlled trial were analysed using geographically-weighted regressions. These models help to quantify associations within women’s proximal contexts by generating local parameter estimates. Data subsets, representing an empirically-identified scale for neighbourhood, were used. Local associations between outcomes (antenatal, delivery, and postnatal care use) and potential explanatory factors at individual-level (ex: health information source), interpersonal-level (ex: companion support availability) and health service-levels (ex: nearby health facility type) were modelled. Statistically significant local odds ratios were mapped to demonstrate how relevance and magnitude of associations between various explanatory factors and service outcomes change depending on locality. Results: Significant spatial variability in relationships between all services and their explanatory factors (p < 0.001) was detected, apart from the association between delivery care and women’s decision-making involvement (p = 0.124). Local models helped to pinpoint factors, such as danger sign awareness, that were relevant for some localities but not others. Among factors with more widespread influence, such as that of prior service use, variation in estimate magnitudes between localities was uncovered. Prominence of factors also differed between services; companion support, for example, had wider influence for delivery than postnatal care. No significant local associations with postnatal care use were detected for some factors, including wealth and decision involvement, at the selected neighbourhood scale. Conclusions: Spatial variability in service use associations means that the relative importance of explanatory factors changes with locality. These differences have important implications for the design of equity-oriented and responsive health systems. Reductions in within-country disparities are also unlikely if uniform solutions are applied to heterogeneous contexts. Multi-scale models, accommodating factor-specific neighbourhood scaling, may help to improve estimated local associations.
KW - Equity
KW - Ethiopia
KW - Geographically weighted regressions
KW - Local policy
KW - Maternal health services
KW - Responsive health systems
KW - Spatial heterogeneity
KW - Sub-national data
UR - http://www.scopus.com/inward/record.url?scp=85105706737&partnerID=8YFLogxK
U2 - 10.1186/s12913-021-06379-3
DO - 10.1186/s12913-021-06379-3
M3 - Article
C2 - 33980233
AN - SCOPUS:85105706737
SN - 1472-6963
VL - 21
JO - BMC health services research
JF - BMC health services research
IS - 1
M1 - 454
ER -