TY - JOUR
T1 - State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application
AU - Gibbs, Matthew S.
AU - McInerney, David
AU - Humphrey, Greer
AU - Thyer, Mark A.
AU - Maier, Holger R.
AU - Dandy, Graeme C.
AU - Kavetski, Dmitri
N1 - Funding Information:
Acknowledgements. Matthew S. Gibbs and Greer Humphrey were supported by the Goyder Institute for Water Research, project E.2.4. David McInerney was supported by Australian Research Council grant LP140100978 with the Australian Bureau of Meteorology and South East Queensland Water. Input from South East Water Conservation and Drainage Board staff, in particular Senior Environmental Officer, Mark DeJong, is gratefully acknowledged. The authors would like to thank the three anonymous reviewers for their comments and suggestions, which improved the clarity and contribution of the manuscript.
PY - 2018/2/20
Y1 - 2018/2/20
N2 - Monthly to seasonal streamflow forecasts provide useful information for a range of water resource management and planning applications. This work focuses on improving such forecasts by considering the following two aspects: (1) state updating to force the models to match observations from the start of the forecast period, and (2) selection of a shorter calibration period that is more representative of the forecast period, compared to a longer calibration period traditionally used. The analysis is undertaken in the context of using streamflow forecasts for environmental flow water management of an open channel drainage network in southern Australia. Forecasts of monthly streamflow are obtained using a conceptual rainfall-runoff model combined with a post-processor error model for uncertainty analysis. This model set-up is applied to two catchments, one with stronger evidence of non-stationarity than the other. A range of metrics are used to assess different aspects of predictive performance, including reliability, sharpness, bias and accuracy. The results indicate that, for most scenarios and metrics, state updating improves predictive performance for both observed rainfall and forecast rainfall sources. Using the shorter calibration period also improves predictive performance, particularly for the catchment with stronger evidence of non-stationarity. The results highlight that a traditional approach of using a long calibration period can degrade predictive performance when there is evidence of non-stationarity. The techniques presented can form the basis for operational monthly streamflow forecasting systems and provide support for environmental decision-making.
AB - Monthly to seasonal streamflow forecasts provide useful information for a range of water resource management and planning applications. This work focuses on improving such forecasts by considering the following two aspects: (1) state updating to force the models to match observations from the start of the forecast period, and (2) selection of a shorter calibration period that is more representative of the forecast period, compared to a longer calibration period traditionally used. The analysis is undertaken in the context of using streamflow forecasts for environmental flow water management of an open channel drainage network in southern Australia. Forecasts of monthly streamflow are obtained using a conceptual rainfall-runoff model combined with a post-processor error model for uncertainty analysis. This model set-up is applied to two catchments, one with stronger evidence of non-stationarity than the other. A range of metrics are used to assess different aspects of predictive performance, including reliability, sharpness, bias and accuracy. The results indicate that, for most scenarios and metrics, state updating improves predictive performance for both observed rainfall and forecast rainfall sources. Using the shorter calibration period also improves predictive performance, particularly for the catchment with stronger evidence of non-stationarity. The results highlight that a traditional approach of using a long calibration period can degrade predictive performance when there is evidence of non-stationarity. The techniques presented can form the basis for operational monthly streamflow forecasting systems and provide support for environmental decision-making.
UR - http://www.scopus.com/inward/record.url?scp=85041482732&partnerID=8YFLogxK
U2 - 10.5194/hess-22-871-2018
DO - 10.5194/hess-22-871-2018
M3 - Article
AN - SCOPUS:85041482732
SN - 1027-5606
VL - 22
SP - 871
EP - 887
JO - Hydrology and Earth System Sciences
JF - Hydrology and Earth System Sciences
IS - 1
ER -