The extinction of dengue through natural vulnerability of its vectors

Craig R. Williams, Christie A. Bader, Michael R. Kearney, Scott A. Ritchie, Richard C. Russell

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)


Background: Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. Methodology/Principal Findings:Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. Conclusions/Significance: These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in subtropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies.

Original languageEnglish
Article numbere922
Pages (from-to)1-7
Number of pages7
JournalPLoS Neglected Tropical Diseases
Issue number12
Publication statusPublished or Issued - Dec 2010
Externally publishedYes

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Infectious Diseases

Cite this