TY - JOUR
T1 - The impact of genomic and traditional selection on the contribution of mutational variance to long-term selection response and genetic variance
AU - Mulder, Herman A.
AU - Lee, Sang Hong
AU - Clark, Sam
AU - Hayes, Ben J.
AU - Van Der Werf, Julius H.J.
N1 - Publisher Copyright:
© 2019 by the Genetics Society of America.
PY - 2019
Y1 - 2019
N2 - De novo mutations (DNM) create new genetic variance and are an important driver for long-term selection response. We hypothesized that genomic selection exploits mutational variance less than traditional selection methods such as mass selection or selection on pedigree-based breeding values, because DNM in selection candidates are not captured when the selection candidates' own phenotype is not used in genomic selection, DNM are not on SNP chips and DNM are not in linkage disequilibrium with the SNP on the chip. We tested this hypothesis with Monte Carlo simulation. From whole-genome sequence data, a subset of -300,000 variants was used that served as putative markers, quantitative trait loci or DNM. We simulated 20 generations with truncation selection based on breeding values from genomic best linear unbiased prediction without (GBLUP_no_OP) or with own phenotype (GBLUP_OP), pedigree-based BLUP without (BLUP_no_OP) or with own phenotype (BLUP_OP), or directly on phenotype. GBLUP_OP was the best strategy in exploiting mutational variance, while GBLUP_no_OP and BLUP_no_OP were the worst in exploiting mutational variance. The crucial element is that GBLUP_no_OP and BLUP_no_OP puts no selection pressure on DNM in selection candidates. Genetic variance decreased faster with GBLUP_no_OP and GBLUP_OP than with BLUP_no_OP, BLUP_OP or mass selection. The distribution of mutational effects, mutational variance, number of DNM per individual and nonadditivity had a large impact on mutational selection response and mutational genetic variance, but not on ranking of selection strategies. We advocate that more sustainable genomic selection strategies are required to optimize long-term selection response and to maintain genetic diversity.
AB - De novo mutations (DNM) create new genetic variance and are an important driver for long-term selection response. We hypothesized that genomic selection exploits mutational variance less than traditional selection methods such as mass selection or selection on pedigree-based breeding values, because DNM in selection candidates are not captured when the selection candidates' own phenotype is not used in genomic selection, DNM are not on SNP chips and DNM are not in linkage disequilibrium with the SNP on the chip. We tested this hypothesis with Monte Carlo simulation. From whole-genome sequence data, a subset of -300,000 variants was used that served as putative markers, quantitative trait loci or DNM. We simulated 20 generations with truncation selection based on breeding values from genomic best linear unbiased prediction without (GBLUP_no_OP) or with own phenotype (GBLUP_OP), pedigree-based BLUP without (BLUP_no_OP) or with own phenotype (BLUP_OP), or directly on phenotype. GBLUP_OP was the best strategy in exploiting mutational variance, while GBLUP_no_OP and BLUP_no_OP were the worst in exploiting mutational variance. The crucial element is that GBLUP_no_OP and BLUP_no_OP puts no selection pressure on DNM in selection candidates. Genetic variance decreased faster with GBLUP_no_OP and GBLUP_OP than with BLUP_no_OP, BLUP_OP or mass selection. The distribution of mutational effects, mutational variance, number of DNM per individual and nonadditivity had a large impact on mutational selection response and mutational genetic variance, but not on ranking of selection strategies. We advocate that more sustainable genomic selection strategies are required to optimize long-term selection response and to maintain genetic diversity.
KW - De novo mutation
KW - Genetic variance
KW - Genomic selection
KW - Response to selection
KW - Selection strategies
UR - http://www.scopus.com/inward/record.url?scp=85073083224&partnerID=8YFLogxK
U2 - 10.1534/genetics.119.302336
DO - 10.1534/genetics.119.302336
M3 - Article
C2 - 31431471
AN - SCOPUS:85073083224
SN - 0016-6731
VL - 213
SP - 361
EP - 378
JO - Genetics
JF - Genetics
IS - 2
ER -