TY - JOUR
T1 - The relationship between coronary artery distensibility and fractional flow reserve
AU - Yong, Andy S.C.
AU - Javadzadegan, Ashkan
AU - Fearon, William F.
AU - Moshfegh, Abouzar
AU - Lau, Jerrett K.
AU - Nicholls, Stephen
AU - Ng, Martin K.C.
AU - Kritharides, Leonard
N1 - Publisher Copyright:
© 2017 Yong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/7
Y1 - 2017/7
N2 - Discordance between angiography-based anatomical assessment of coronary stenosis severity and fractional flow reserve (FFR) has been attributed to several factors including lesion length and irregularity, and the myocardial territory supplied by the target vessel. We sought to examine if coronary arterial distensibility is an independent contributor to this discordance. There were two parts to this study. The first consisted of “in silico” models of 26 human coronary arteries. Computational fluid dynamics-derived FFR was calculated for fully rigid, partially distensible and fully distensible models of the 26 arteries. The second part of the study consisted of 104 patients who underwent coronary angiography and FFR measurement. Distensibility at the lesion site (DistensibilityMLA) and for the reference vessel (DistensibilityRef) was determined by analysing three-dimensional angiography images during end-systole and end-diastole. Computational fluid dynamics-derived FFR was 0.67±0.19, 0.70±0.18 and 0.75±0.17 (P<0.001) in the fully rigid, partially distensible and fully distensible models respectively. FFR correlated with both DistensibilityMLA (r = 0.36, P<0.001) and DistensibilityRef (r = 0.44, P<0.001). Two-way ANCOVA analysis revealed that DistensibilityMLA (F (1, 100) = 4.17, p = 0.031) and percentage diameter stenosis (F (1, 100) = 60.30, p < 0.01) were both independent predictors of FFR. Coronary arterial distensibility is a novel, independent determinant of FFR, and an important factor contributing to the discordance between anatomical and functional assessment of stenosis severity.
AB - Discordance between angiography-based anatomical assessment of coronary stenosis severity and fractional flow reserve (FFR) has been attributed to several factors including lesion length and irregularity, and the myocardial territory supplied by the target vessel. We sought to examine if coronary arterial distensibility is an independent contributor to this discordance. There were two parts to this study. The first consisted of “in silico” models of 26 human coronary arteries. Computational fluid dynamics-derived FFR was calculated for fully rigid, partially distensible and fully distensible models of the 26 arteries. The second part of the study consisted of 104 patients who underwent coronary angiography and FFR measurement. Distensibility at the lesion site (DistensibilityMLA) and for the reference vessel (DistensibilityRef) was determined by analysing three-dimensional angiography images during end-systole and end-diastole. Computational fluid dynamics-derived FFR was 0.67±0.19, 0.70±0.18 and 0.75±0.17 (P<0.001) in the fully rigid, partially distensible and fully distensible models respectively. FFR correlated with both DistensibilityMLA (r = 0.36, P<0.001) and DistensibilityRef (r = 0.44, P<0.001). Two-way ANCOVA analysis revealed that DistensibilityMLA (F (1, 100) = 4.17, p = 0.031) and percentage diameter stenosis (F (1, 100) = 60.30, p < 0.01) were both independent predictors of FFR. Coronary arterial distensibility is a novel, independent determinant of FFR, and an important factor contributing to the discordance between anatomical and functional assessment of stenosis severity.
UR - http://www.scopus.com/inward/record.url?scp=85025710927&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0181824
DO - 10.1371/journal.pone.0181824
M3 - Article
C2 - 28742827
AN - SCOPUS:85025710927
SN - 1932-6203
VL - 12
JO - PloS one
JF - PloS one
IS - 7
M1 - e0181824
ER -