TY - JOUR
T1 - The usual suspects
T2 - Comparison of the relative roles of potential Urban chikungunya virus vectors in Australia
AU - Jansen, Cassie C.
AU - Williams, Craig R.
AU - Van Den Hurk, Andrew F.
N1 - Publisher Copyright:
© 2015 Jansen et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/8/6
Y1 - 2015/8/6
N2 - The global re-emergence of chikungunya virus (CHIKV) over the last decade presents a serious public health risk to Australia. An increasing number of imported cases further underline the potential for local transmission to occur if local mosquitoes bite an infected traveller. Laboratory experiments have identified a number of competent Australian mosquito species, including the primary vectors of CHIKV abroad, Aedes aegypti and Aedes albopictus, and local endemic species Aedes vigilax and Aedes notoscriptus. The implication of these additional endemic species as potential vectors has generated much uncertainty amongst public health professionals regarding their actual role in CHIKV transmission in the field. Using data estimated from or documented in the literature, we parameterise a simple vectorial capacity model to evaluate the relative roles of Australian mosquito species in potential CHIKV transmission. The model takes into account a number of key biological and ecological variables which influence the role of a species in field transmission, including population density, human feeding rates, mosquito survival rates and vector competence. We confirm the relative importance of Ae. aegypti and Ae. albopictus in sustaining potential CHIKV transmission in Australia. Even at maximum estimated densities and human feeding rates, Ae. vigilax and Ae. notoscriptus are likely to play a relatively minor role in CHIKV transmission, when compared with either Ae. aegypti or Ae. albopictus. This relatively straightforward analysis has application for any region where mosquito species have been incriminated in vector competence experiments, but where their actual role in CHIKV transmission has not been established.
AB - The global re-emergence of chikungunya virus (CHIKV) over the last decade presents a serious public health risk to Australia. An increasing number of imported cases further underline the potential for local transmission to occur if local mosquitoes bite an infected traveller. Laboratory experiments have identified a number of competent Australian mosquito species, including the primary vectors of CHIKV abroad, Aedes aegypti and Aedes albopictus, and local endemic species Aedes vigilax and Aedes notoscriptus. The implication of these additional endemic species as potential vectors has generated much uncertainty amongst public health professionals regarding their actual role in CHIKV transmission in the field. Using data estimated from or documented in the literature, we parameterise a simple vectorial capacity model to evaluate the relative roles of Australian mosquito species in potential CHIKV transmission. The model takes into account a number of key biological and ecological variables which influence the role of a species in field transmission, including population density, human feeding rates, mosquito survival rates and vector competence. We confirm the relative importance of Ae. aegypti and Ae. albopictus in sustaining potential CHIKV transmission in Australia. Even at maximum estimated densities and human feeding rates, Ae. vigilax and Ae. notoscriptus are likely to play a relatively minor role in CHIKV transmission, when compared with either Ae. aegypti or Ae. albopictus. This relatively straightforward analysis has application for any region where mosquito species have been incriminated in vector competence experiments, but where their actual role in CHIKV transmission has not been established.
UR - http://www.scopus.com/inward/record.url?scp=84941992268&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0134975
DO - 10.1371/journal.pone.0134975
M3 - Article
C2 - 26247366
AN - SCOPUS:84941992268
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 8
M1 - e0134975
ER -