@inproceedings{d995229308484d7eb7e1055262cafda2,
title = "Unlearning Scanner Bias for MRI Harmonisation",
abstract = "Combining datasets is vital for increased statistical power, especially for neurological conditions where limited data is available. However, variance due to differences in acquisition protocol and hardware limits our ability to combine datasets. We propose an iterative training scheme based on domain adaptation techniques, aiming to create scanner-invariant features while simultaneously maintaining overall performance on the main task. We demonstrate this on age prediction, but expect that our proposed training scheme will be applicable to any feedforward network and classification or regression task. We show that not only can we harmonise three MRI datasets from different studies, but can also successfully adapt the training to work with very biased datasets. The training scheme should, therefore, be applicable to most real-world data scenarios, enabling harmonisation for the task of interest.",
keywords = "Harmonisation, Joint domain adaptation, MRI",
author = "Dinsdale, {Nicola K.} and Mark Jenkinson and Namburete, {Ana I.L.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 ; Conference date: 04-10-2020 Through 08-10-2020",
year = "2020",
doi = "10.1007/978-3-030-59713-9_36",
language = "English",
isbn = "9783030597122",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "369--378",
editor = "Martel, {Anne L.} and Purang Abolmaesumi and Danail Stoyanov and Diana Mateus and Zuluaga, {Maria A.} and Zhou, {S. Kevin} and Daniel Racoceanu and Leo Joskowicz",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings",
address = "Germany",
}