Zinc is a potent and specific inhibitor of IFN-λ3 signalling

Scott A. Read, Kate S. O'Connor, Vijay Suppiah, Chantelle L.E. Ahlenstiel, Stephanie Obeid, Kristina M. Cook, Anthony Cunningham, Mark W. Douglas, Philip J. Hogg, David Booth, Jacob George, Golo Ahlenstiel

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

Lambda interferons (IFNL, IFN-λ) are pro-inflammatory cytokines important in acute and chronic viral infection. Single-nucleotide polymorphisms rs12979860 and rs8099917 within the IFNL gene locus predict hepatitis C virus (HCV) clearance, as well as inflammation and fibrosis progression in viral and non-viral liver disease. The underlying mechanism, however, is not defined. Here we show that the rs12979860 CC genotype correlates with increased hepatic metallothionein expression through increased systemic zinc levels. Zinc interferes with IFN-λ3 binding to IFNL receptor 1 (IFNLR1), resulting in decreased antiviral activity and increased viral replication (HCV, influenza) in vitro. HCV patients with high zinc levels have low hepatocyte antiviral and inflammatory gene expression and high viral loads, confirming the inhibitory role of zinc in vivo. We provide the first evidence that zinc can act as a potent and specific inhibitor of IFN-λ3 signalling and highlight its potential as a target of therapeutic intervention for IFN-λ3-mediated chronic disease.

Original languageEnglish
Article number15245
JournalNature Communications
Volume8
DOIs
Publication statusPublished or Issued - 17 May 2017
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this